Estimation of partial resistance in potato cultivars against *Meloidogyne chitwoodi* Patrick M. Norshie

Prof. Dr. T.H. Been & Prof. Dr. C.H. Schomaker

INTRODUCTION

Potato, (Solanum tuberosum), represents one of the most important food plants worldwide (Spooner et al. 2007).

Meloidogyne chitwoodi is among the nematodes of economic importance on potato.

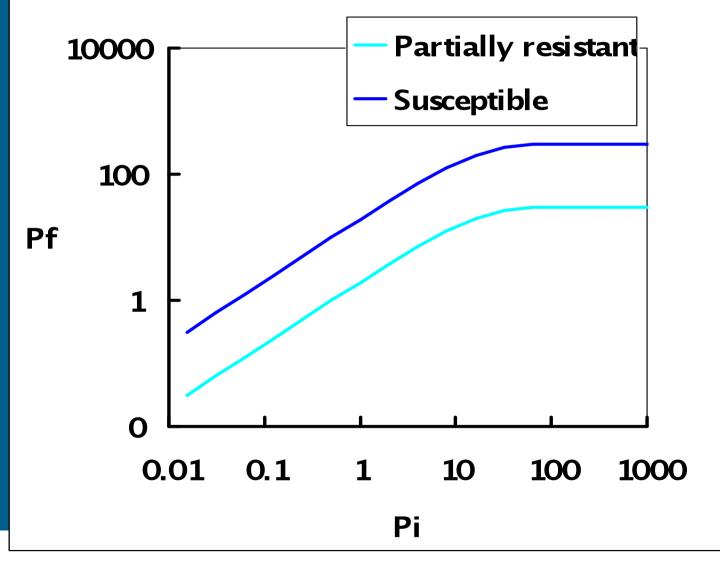
Damage to the crop is mainly qualitative

QUALITY DAMAGE

- Formation of blisters on tubers
- Development of necrotic spots around developing females in flesh
- Infections lead to rejection of tubers in both consumption and export markets

Seinhorst (1995) used the population dynamical model to quantify partial resistance in potatoes against *G. rostochiensis and G. pallida*

• $Pf = M * (1 - e^{-aPi/M})$


• a is maximum multiplication rate (at low nematode density)

• *M* is maximum population density (at high nematode density)

But can the same system work for *M. chitwoodi* ?
Can we estimate partial resistance in the same way as was done for *G. pallida*?

Partial resistance

Estimate the partial resistance of three potato cultivars bred for resistance against *M. chitwoodi*.

Research the possibility for the development of a cheap and easy to use pot test for partial resistance testing for *M. chitwoodi*

Investigate if the partial resistance has any impact on tuber quality

MATERIAL AND METHODS

Artificial soil (1100kg)

• 6 liter pots, each filled with 5000g dry soil

Nematode inoculum

- Second-stage juveniles serve as inoculum
- Initial Population densities ranged from 0 (control) 0.5, 1, 2, 4, 6, 8, 16, 32, 64, 128 and 256 nematodes per gram of soil.

INOCULATION

Nematodes were nearly randomly distributed in each pot

PLANT MATERIAL

Plant materials consisted of
AR 04-4107
AR 04-4096
AR 04-4098
Desiree (susceptible check)

Tuber pieces, each with a sprout, and about 3 cm long were used as planting materials.

GROWTH CONDITIONS

Temperature: 15 - 20°C
Soil moisture: 10 - 15%
Watering: Automated
Handling of pots: Rotated once every week

DATA COLLECTION

Plant growth indicators

 Plant height (weekly), Fresh root weight, Fresh and dry shoot weight, Fresh and dry tuber weight

Final population densities in organic and mineral fractions were estimated respectively using a mist chamber and the Seinhorst elutriator

TUBER QUALITY ASSESSMENT

Root Knot Index for Meloidogyne

Class	Symptoms (on skin)	Egg mass (under skin)
0	None	None
1	None	Yes
2	< 30% tuber surface infection	Yes
3	30 – 100% tuber surface infection	Yes
4	Tuber heavily deformed	Yes

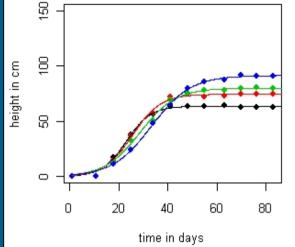
 $RKI = \underline{[(\# \text{ root class } 0 + 1 \times 0) + (\# \text{ root class } 2 \times 10) + (\# \text{ root class } 3 \times 33) + (\# \text{ root class } 4 \times 100)}$ Total number of root assessed

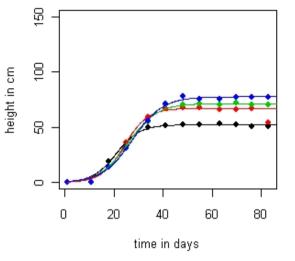
MODELING AND PARAMETER

ESTIMATION

Models used:

- Logistic model fitted to plant height in time
- Seinhorst (1986) model to fresh tuber and total fresh weight
- Seinhorst (1967) model for population development

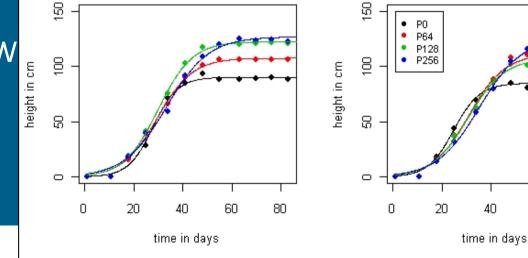

All models were fitted using non-linear least square regression. Models were fitted using R.



RESULTS

Plant height

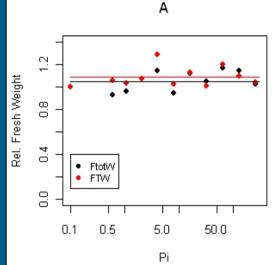
 Growth curves after emergence were typically logistic for all cultivars

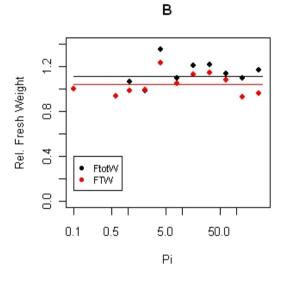


60

80

Infected plants grew taller

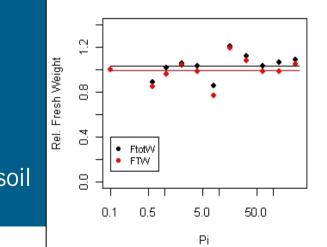



RESEARCH INTERNATIONAL

Fresh tuber weight & total fresh weight

Fresh tuber weight

Cultivar	т	Т
AR 04-4107	1	-
AR 04-4096	1	-
AR 04-4098	1	-
Desirée	0.86	3.5 juv/gsoil
AR 04-4096 AR 04-4098	1	- - 3.5 juv/gsoi


D

Pi


50.0

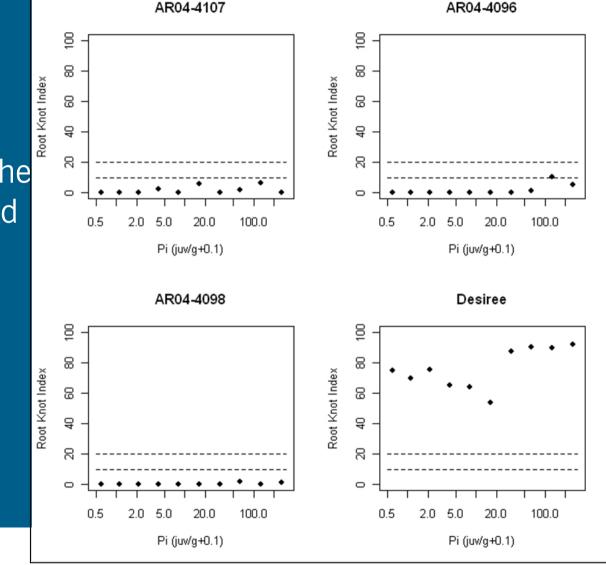
Total fresh weight

Cultivar	т	Т
AR 04-4107	1	-
AR 04-4096	1	-
AR 04-4098	1	-
Desirée	0.72	3.5 juv/gs

С

PLANT RESEARCH INTERNATIONAL

Parameter values Pop. Dynamical model


Parameter estimates 100.00 Cultivar Μ а AR 04-4107 0.55* 0.16* AR 04-4107 0.55* 0.16* AR 04-4096 0.27* 0.18* AR 04-4098 0.91* 0.10* Desirée 32 80 * Significantly different at P = 0.05 **Relative Susceptibility** Desiree 10.00 AR04-4107 AR04-4096 AR04-4098 <u>8</u> 0.10 Cultivar rs_a **r**S_M AR 04-4107 1.7 0.2 0.01 0.2 0.8 AR 04-4096 AR 04-4098 2.8 0.1 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0 200.0 Desirée 100 100 Initial population density (juv./g soil)

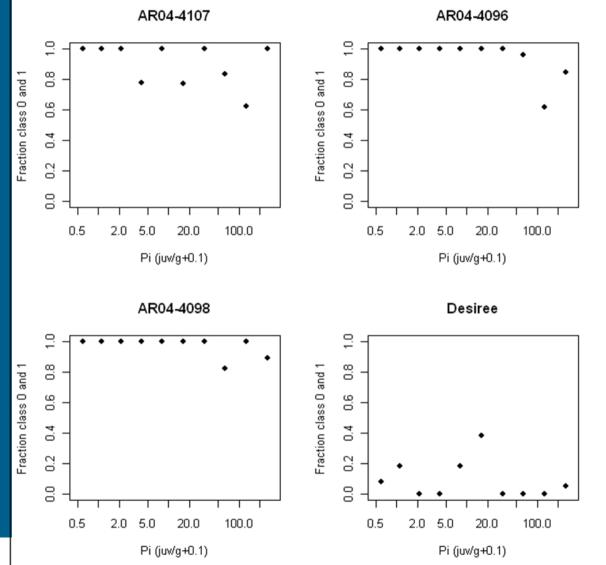
PLANT RESEARCH INTERNATIONAL WAGENINGEN UR

Tuber quality based on root-knot index

Ware potatoes

At all densities tested, the new cultivars maintained tuber quality below the RNI=10 lower quality threshold.

ANT RESEARCH INTERNATIONAL

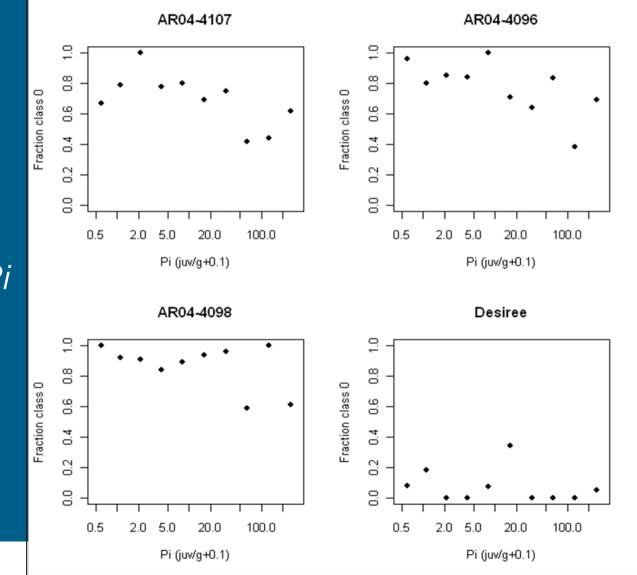


Quality based on class 0 and 1 (EU)

Seed potatoes

AR 04-4098 and AR 04-4096 both had same damage threshold of 32 juveniles/g soil.

AR 04-4107 was more vulnerable to quality losses and had a damage threshold of 2 juveniles/g soil.


ANT RESEARCH INTERNATIONAL

Quality based on class 0 (free of external and internal symptoms)

Seed potatoes

The three resistant cultivars gave quality damage threshold at *Pi* 0.5 juv/g soil.

PLANT RESEARCH INTERNATIONAL

Discussion

The inclusion of a single resistance gene against *M*. chitwoodi resulted in

- a high partial resistance
- resistance was associated with tolerance for yield reduction.

 Going by current regulations, our materials could be accepted as ware or industrial potatoes (e.g. chips, French fries) provided quality is sustained during storage

Discussion

- Acceptance as seed potatoes
 - We may have problems accepting these cultivars because the estimated resistance could not yield tubers completely free of internal symptoms.
 - Population within these tubers could just increase over time.

Molecular test are more frequently used

Discussion

Results are encouraging but feasibility of routine testing needs more basic research

- Our materials were highly partially resistant
- Only one population of the M. chitwoodi evaluated
- Tuber quality was assessed at harvest hence, no idea of population build-up during storage

The way forward

- Need to include more plant material and populations in the test
- Understand the effects of storage on tuber quality and population development in the tubers
- Establish the relation between RS and tuber infestation

THE END

Thanks to:
VLIR
Annelies Beniers
Ralph Post
Leendert Molendijk

I APPRECIATED YOUR ATTENTION!!

